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MINIMAL D E G R E E  FOR A PERMUTATION 
REPRESENTATION OF A CLASSICAL 

GROUP 

BY 

BRUCE N. COOPERSTEIN' 

ABSTRACT 

The minimal degree for a permutation representation of the finite linear groups, 
and finite classical groups is determined. 

w 1. Introduction 

The purpose of this paper is to determine the minimal degree of a permutation 

representation of a classical group. Interest in this type of problem dates back to 

Galois. Galois proved if G = PSL2(p), p a prime, then the minimal degree of a 

permutation representation of G is p + 1 provided p > 11, while the degree is p 

if p _-< 11. In his thesis [15], W. Patton determined the minimal degree for 

G = SL, (q) or SP2, (q), q odd. We determine the minimal degree for the 

remaining classical groups. We also include in our proof Patton's  results as they 

have not been published. 

02. Minimal degrees of the classical groups 

Table 1 gives the degree d (G)  of a permutation representation of a linear or 

classical group G which we assert is the minimal degree for G. In the third 

column we have indicated the stabilizer of a point in this representation. 

w 3. Root elements in linear and classical groups 

Let V be a vector space of dimension n > 2 over Fr = Fpe. For T E GL(V) ,  

W _-< V, denoted by [T, W] = [W, T] the subspace of V generated by T w  - w as 

w runs over W. When Q is a point (i.e., one-space) of V and H is a hyperplane 
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TABLE 1 

G d (G)  Point Stabilizer 

SL. (q), (n, q) # (2,2), (2, 3), 

(2, 5), (2, 7), (2, 9), (2, 11),(4,2) 

SLy(2) 

SL2(3) 

SI~(5) 

SLa(7) 

SLa(9) 

SLa(11) 

SL,(2) 

Sp,(2) 

Sp2. (2) =* f12..,(2), n _-> 3 

Sth. (q), n _ - 2 ,  q > 2 ,  

( n , q ) #  (2,3) 

Sp,(3) 

Da.+,(I/), n ~ 3, q odd  

l'~.(q), n_->4, q > 2  

fh*.(2), n /~  4 

su,(q), q# 2,5 

SU,(2) 

su~(5) 

Stabilizer of a point in usual 

q" - 1 2-transitive representation on 
q - 1  

points or hyperplanes of 
PG(n - 1, q) 

2 A three Sylow ~ Z3 

3 A 2-Sylow ~ Os 

5 A 2-Sylow normalizer =-A,  

7 Either  of the 2-classes of ~4 

6 A ,  (2 classes) 

11 As 

8 A ,  

2 A ,  

2"- '  (2" - 1) GO~42 ) 

q2a-! 
Stabilizer of a point of 

q - 1  
PG(2n - 1 ,q)  

27 A maximal 2-local which is a 
split extension of ~ by 
f),~ (2) ~ As 

q2. _ 1/q - 1 Stabilizer of a singular 
point of PG(2n, q) 

(q" - 0 ( q ' - '  + 1) 
q - 1  

2"-1(2 ~ - 1) 

q 3 + l  

50 

Stabilizer of a singular 

point of P G ( 2 n -  1 ,q)  

Stabilizer of a non-singular 
point of PG(2n - I, 2), 
n . . . .  (2) = SP . . . .  (2) 

Stabilizer of an absolute 
point of PG(2, q2), normalizer 
of a p-Sylow, p = char Fq 

Centralizer of an element of 
order 3-extention of a three 
group of order  27 by Z4 

A.-3 fold cover of A7 
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SU,(q) 

SU. (q), n~5  

f l i . (q) ,  n _-> 4 

(q + l ) (q~+ 1) Stabilizer of a totally iso- 
tropic line in PG(3, q2); a 
maximal p-local which is a 
split extension of ~ by 
n; (q) -~ SL~(q 2) 

[q" - ( -  1)"][q . . . .  ( -  1)*-~] Stabilizer of an absolute point 
q ~ - I  

of PG(n - 1,q 2) 

(q" + 1)(q " - 1 -  1) Stabilizer of a singular point 
q - 1  

of PG(2n - 1,q)  

with Q C_ H, then T E GL(V)  is said to be a transvection with center Q and axis 

H if [T, V] = Q, [T, H]  = 0. SL(V) is the subgroup of G L(V )  consisting of those 

transformations of determinant 1. In all cases S L ( V ) =  ( T : T  a transvection). 

Set G = SL(V). A parabolic subgroup of G is the stabilizer of some chain of 

subspaces. The maximal parabolic subgroups are the stabilizers of some sub- 

space W (a chain of length 1), Gw, and these are the maximal p-local subgroups 

of G. G is transitive on chains of a given type, and in particular on subspaces of a 

given dimension. If Lk (V) denotes the collection of k-subspaces of G, then for 

WE Lk(V), 

( q '  - 1) 
r n l  

m 

JG Gw] IL~(V)l = i _ i ( q , _ l ) . [ _ I ( q , _ l ) J - '  

i - 1  J-J 

Then clearly I G : G,~ j _-> (q" - 1)/(q - 1) for any chain of subspaces. In particular, 

if X ~  G so IG : X / < d ( G ) ,  then X acts irreducibly on V. 

Now suppose V is equipped with a non-degenerate alternate or skew 

hermitian form/ .  For uniformity we denote  by GO(f )  the group of isometrics of 

[:GO(f)={TEGL(V):f(Tv,  Tw)=f(v,w) for all v, wE V}. S O ( f ) =  

GO(f )  1"3 SL(V). When f is alternate set qo = q and when f is skew-hermitian, let 

qo = X/q. It is well-known if dim V = 2, then S O ( f ) ~  SL2(qo). Thus we assume 

dim V => 3. A vector v in V is said to be isotropic if f(v, v) = 0, and then we say 

the point ( v )  is absolute. For W<=V, set W l = { v E V : f ( v , w ) = O  for all 

w ~ W}. If v is an isotropic vector, then To : V ~ V given by 

T o ( w ) =  w- f ( w , v ) v  is in SO(/). 

In fact unless f is skew-hermitian, dim V = 3 and q = 4, SO(/)  = (Tv :f(v,  v) = 

0). When f is skew hermitian, dim V = 3, q = 4, then SO(f) is a group of order  

2 3.3 ~ and (To :f(v, v)) is a normal subgroup of index 4. Note that To is a 
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transvection with center (v) and axis (v) ~. A subspace W of V is totally isotropic 

if W C W I. The parabolic subgroups are the stabilizer of chains of totally 

isotropic subspaces, and the maximal parabolics are the stabilizers of totally 

isotropic subspaces. When f is alternate we denote the group GO(f )  by Sp(f), 

Sp(V), Sp,(q).  We remark in the alternate case G O ( f ) =  Sp(f). When f is 

skew-hermitian we denote GO(f )  by GU(f) ,  GU(V) ,  etc., and SO(f) by SU(f), 

etc. SO(f) is transitive on chains of totally isotropic subspaces of any given type 

(Witt's theorem), and in particular on totally isotropic subspaces of a given 

dimension. Suppose G = Sp(V) where dim V = n = 2m, and W is a totally 

isotropic k-space. Then 

(3.1) 
l~I (q2j _ 1) 

JG:G,, ,I  = ~ ~" ,,-k 
1-I (q' - 1). l-I (q2, 
j - ~  j = l  

-1) 

Note that this is at least d(G).  When q fi 2 and (m, q ) f i  (2, 3), W an isotropic 

one-space, see that I G : Gw I = d(G).  Consequently the minimal degree for G is 

at most d(G)  in these cases. Suppose X<=G, IG : X I < d ( G )  and X is not 

irreducible on V. Let W be a minimal X-invariant subspace of V. Then 

Rad W = W f'l W'  is also X-invariant, Rad W =< W. If Rad W = W, then W is 

totally isotropic and I G :XI>=IG:G, , ,  I >- - d(G),  contradicting our assumption 

that I G : X ! < d ( G ) .  Therefore  Wfq W L = 0 ,  W is non-degenerate and V =  

W(~) W ~. The map g ----* (g I W, g I W  • is an isomorphism from X to Sp(W)•  

Sp(Wl).  If dim W = 2k, then 

IG : X I >= q *(Z"-k) [ m ]q2> 

Therefore,  if X =< G so I G : X I < d(G),  then X acts irreducibly on V. 

Now suppose G = S U ( V ) =  SU. (qo), and W is a totally isotropic k-space. 

Then 

(3.2) 

2k - I  

l-I ( -  1) ~ ] 
tG : G w l =  ~-o 

I-I 1) 
j - I  

In all cases this is at least d(G).  Suppose n = 3 or n _--> 5 and (n, qo), -~ (3,2) or 

(3,5). If W is an absolute point, then I G : G w t  = d(G),  so that the minimal 

degree in these cases is at most d(G).  When n = 4, let W be a totally isotropic 

2-subspace of V. Then I G : Gw I = d(G),  so in this case as well the minimal 



VOI. 30, 1978 CLASSICAL G R O U P  217 

degree is no greater than d(G). Now assume X -< G is reducible on V. Take W 

to be a minimal X-invariant subspace of V. Then W = Rad W, or 0 = Rad W. In 

the first case I G : X I => I G : Gw I => d(G) by the remark following (3.2). Suppose 

R a d W = 0 ,  so V =  W ~ W I. Then I G . I = I G U ( W ) I . I S U ( W ~ ) I =  

(qo+ 1) lSU(W)l ' lSU(Wl) l .  If dim W = k, then 

q'o [q'o- ( -  1) j ] 
I o : x l > l o : o w I  = 

1-I ]. l-I 
i-1 1-1 

and then I G : X l > d(G). 

Now for G = SL(V), Sp(V), or SU(V), the transvections in G will be called 

the long root elements of G. We denote by F the collection of all cyclic 

subgroups of G generated by a long root element. For x E F, R. = 

Z(OP'(C6 (x))), and this is the long root subgroup of G containing x. �9 = 

{R, : x E F}. For a subgroup X of G, F(X) = {x • F : x _-< X}. Also if x E F, let 

V, be the center of x (i.e. [V,x]). Note when G = Sp(V) or SU(V), then for 

x,y E F, Ix, y] = 1 if and only if V, _-< V~. Before turning our attention to 

orthogonal groups we point out that PSp4(3)---PSU4(2), and consequently the 

minimal degree for Sp4(3) is no greater than d ( G ) =  27. 

Now let V be equipped with a non-degenerate quadratic form Q, and let f be 

the associated symmetric form. A vector v is singular if Q ( v )  = 0. A subspace is 

totally singular if all its vectors are singular. For W a subspace of V we denote 

by W •  and R a d W =  W N W  I. Note that R a d V = 0  
unless dim V is odd and p = 2, in which case dim Rad V = 1 and Q(Rad V ) ~  0. 

The isometry group of Q, { T E  GL(V) : Q(v)  = Q(Tv )  for all v E V} is denoted 

by GO(V). Let W = (v,, v2) be a totally singular two-subspace of V. Then the 
element of GL(V) defined by 

T ( w )  = w - f (v , ,  w)v~ + f(v2, w)v,  

is in GO(V).  Such an element is called a long root element, f i (V) is the group 

generated by long root element. When G = f~(V) we denote by F the collection 

of cyclic subgroups of G generated by a long root element. When dimension of 

V, n, is odd, n = 2m + 1, we also denote ~q(V) by fl2,~.,(V), when dimension of 

V is even, n = 2m, we denote ~ (V)  by fG, (q)  on lqi,~(q) as the index of f is 

maximal or non-maximal. Note that fi~(q) is a cyclic group of order q -  e, 

fl3(q)-- SL2(q), fl;(q)--- SLffq) x SLffq), l~;(q) = SLffq2), l~5(q)- Sp,(q), 

f ~ ( q ) - S L 4 ( q )  and f~;(q)~-SU4(q). Also f l (V) is irreducible on V unless 
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dimension of V is odd and q is even. In this case II(V) normalizes Rad V and 

acts as a symplectic group on V/Rad V. 

The parabolic subgroups of I~(V) are the stabilizers of chains of totally 

singular subspaces, and the maximal parabolics are the stabilizers of totally 

singular subspaces. Suppose dim V = 2m + 1, and W is a totally singular 

subspace of dimension k. Then 

l~I (q'J - 1) 
i - t  (3.3) I G : G w I =  k , - k  

I-I (qJ -- 1)" I-I (q2, _ 1) 
j - 1  / - i  

Thus t G : Gw I --> d(G) for every totally singular subspace. Note if q is odd and 

W is a singular one-space, then I G : Gw I = d(G), so that in this case the minimal 

degree of G is no greater than d(G). If q is even, then it is implied above that 

G -= Sp2,(q). We already have remarked that if q > 2, then the minimal degree 

of G is at least d(G). Suppose that q = 2. G contains GO~,(2) and the index of 

this group in G is 2" - ' (2"  + e). Consequently the minimal degree of G is no 

greater than d(G) in this case. Suppose X_- < G and X acts faithfully on 

V/Rad V. Let W be a minimal X invariant subspace containing Rad V. If 

Rad W ~  Rad V, then Rad W = W and X is contained in a parabolic subgroup, 

so I G:XI>= d(G). If Rad W = Rad V, then the map from X to G O ( W ) x  

G O ( V / W )  by g ~ (g tw ,  g l v / w )  is an injection. It then follows by computing 

the orders of GO(W) and G O ( V / W )  that IG :XI_->d(G). Thus if G has a 

subgroup X so I G : X  I< d(G),  then X acts irreducibly on V/Rad V. 

W Now consider G = 2.,(q). As before the parabolic subgroups are the 

stabilizers of chains of totally singular subspaces, and are maximal if and only if 

the chain has length one. Suppose W is a totally singular k-subspace of V. Then 

k-1 

1-I (q" -~' - ~) (q" -~'-' + e ) 
(3.4) I O : Ow I =/-o k 

l I  (q' - 1) 
j - ,  

and so I G : Gw I >- d(G) for any totally singular subspace W. Suppose either 

e = - 1 or q > 2, W a singular one-space. Then I G : Gw [ = 

(q"  - e ) ( q "  + e) /q - 1 = d(G), so the minimal degree of G in these cases is no 

greater than d(G). Thus consider fl:~(2)= G. G acts transitively on the 

nonsingular vectors in V (Witt-Dieudonne Theorem), and there are 2 TM - 1 - 

(2" - 1) (2"- '+  1)= 2"- ' (2"  - 1)= d(G) such vectors. The centralizer of such a 

vector w is isomorphic to I~((w) l)--- f~z.-,(2)---Sp2._:(2). Thus in this case as 
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well the minimal degree of G is no greater than d(G). As in the previous cases 

we can show if X =< G acts reducibly on V, then I G : X I =< d(G). 

Before we get to the remaining results of this section we introduce some 

notation for the orthogonal groups. Recall F is the collection of cyclic subgroups 

of G = I I ( V )  generated by a long root element. For x E F, let R, = 

Z(OP'(C6(X)) ) ,  so that R, is the long root subgroup containing x, 

if' = {R, : x E F}, let V, = [ V, x ]. If T ~ x then there is a base vl, v2 for V, so 

T(w)  = w - f(vl ,  w)v2 + f(v2, w)v,.  

Also, for a subgroup H of G we write F(H) to denote the subset of F of 

subgroups contained in H. 

(3.5) LEMMA. Let G be a group of Lie type of rank at least two over F~, q = p ' ,  

G not ~F,(q). Let R be a long root subgroup, T = Z ( R  ). Set �9 = T ~ For H <= G, 

~ ( H )  = {X E �9 : X <= H}. For X, Y E ~ one of the following hold: 

(i) [X, Y] = 1, I~~ Y))] = q + 1, (X, Y)" = Uz~(~• In this case 

write (X, Y )  E A. 

(ii) [X, Y] = 1, ff'(<X, Y)) = {X, Y} and we write (X, Y )  E A2. 

(iii) I(X, Y>f = q3, (X, Y>'= IX, Y] = Z ( ( X ,  Y>)~  ~,  and 

(X,[X,  Y] ) (Y , [X ,  Y])EA.  We write (X, Y)~A3. 

(iv) <X, Y> ~- SL:(q) or PSL2(q) and we write (X, Y )  E A,. 

PROOF. See (12.1) of [1]. 

(3.6) LEMMA. Let (X, Y )  E A, Z ~ A,(X) = {Z ~ if' : (X, Z )  E A,}. Then 

I~E((X, Y)) M A3(Z)I = 1, ff'(<X, Y ) ) -  A~(Z) C A4(Z). 

PROOF. When G is of type A~ (G = SL~+I (q)) this is straightforward to check. 

When G is of type C~ or ZAt there are no pairs of type A, so there is nothing to 

prove. In the remaining cases, the representation (G, ~ )  is a maximal parabolic 

representation. By [2], there is a distinguished self-paired orbital so that the 

incidence structure associated with this orbital is thick. The orbital is always A, 

and for (X, Y) E A, the line on X and Y is ~((X, Y)). Moreover, in each of these 

geometries, O~, (Gx) = Op (Na(X) )  is regular on A4(X) and Gx.z >-- Ca((X, Z) )  is 

transitive on the lines on X, where Z ~ A,(X). Therefore, it suffices to prove the 

assertion for a single line on X and a single Z ~ A4(X). In each case this is a 

straightforward calculation. 

(3.7) NOTATION. If X is an elementary abelian group, let ~,(X) be the 

collection of its non-trivial cyclic subgroups. 
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Let G , ~  be as in (3.5) and let F =  U •  For  a subgroup  H of 

G , F ( H ) = { x E F : x _ - < H } . D e f i n e  - o n F b y u - v  if and only i f u  a n d v  are 

con juga te  in (u, v). We  r emark  that  if we set R,  = Z(OP'(Co(X))) for  x ~ F, 

then R , ~ ,  and for u ,v  E F ,  u ~ v  if and only if (R. ,Ro)EA, .  For  H<=G, 

u E F ( H ) , / 4 ,  will deno te  the connec ted  c o m p o n e n t  of (F (H) ,  ~ IF (H) )  contain-  

ing u, and H(u)= (H,). 

(3.8) LEMMA. Assume H = (F(H)) ,  Op ( H )  = 1. 

(i) If u, v E F ( H ) ,  [u, v] = 1 and g',((u, v)) C_ F, then v E H,. 

(ii) If v E r ( x ) -  H., then [v,H(u)] = 1. 

(iii) H. is a conjugacy class in H(u)  and H. 

PROOF. Since O ~ ( H ) =  1, by a t h e o r e m  of  Bae r  (see T h e o r e m  38.7 in [6]), 

there  is a con juga te  w of u so (u, w) is not  a p -g roup ,  and a con juga te  z of  v so 

(z, v) is not a p -g roup .  Then  u - w and v - z. If R ,  = R~, then ( w , v )  is not  a 

p -g roup ,  and then v - w, so that  v E H, .  There fo re ,  we may  assume R ,  ~ Ro. 

Let  R~, R2, �9 �9 ", Rp.I be the root  subgroups  that  intersect  (u, v)  non-tr ivial ly,  with 

RI = R,,  R2 = Ro. Then  for  each i~ j ,  ( R , , R j ) E  A. Let  W = Rw, Z = R,. Then  

(R~, W ) E  A,, (R2, Z)r  A,. If (R~, Z ) •  A4, or  (R2, W ) ~  A4 then one  of u, z, 0 or  

u, w, o is a - path f rom u to v, and then v E H. .  So we may  assume (R1, Z ) ,  

(R2, W ) ~ A 4 .  Then  (R~ ,Z) ,  (R2, W ) ~ A 3 .  Howeve r ,  by ( 3 . 6 ) I { R , : l _ < - i _ -  < 

p + 1} n A3(Z)I, I{R,:I<=i<--p+I}AA~(W)I<=I, and { R , : I _ - < i _ -  < 

p + 1 } -  A3(W)(resp.  A3(Z))C_ A4(W)(resp .  A~(Z)). Consequen t ly  R3 E A 4 ( W ) n  

A,(Z) .  Set r = (u, o) n R3. Then  u, w, r, z, v is-a - path  f rom u to v, so v ~/4",  

proving (i). 

(ii) We claim if v E r(H)- H,,  then [u ,v]  = 1. By (i) g'~((u,o)) ~ F. If (u,o) is 

a p -g roup ,  [ u , o ] # l ,  then if w = [ u , v ]  we have  fgl((u,w)), fgl((v,w))C_F. 

Then  w ~ H . ,  so H , = H w .  Also o E H . ,  so H . = H w = H ~ ,  contradic t ing 

v E F ( H ) -  H, .  T h e r e f o r e  [u, v] = 1 as asserted.  Since for  any w E H, ,  H ,  = Hw, 

also [w, v] = 1. Then  since H(u)= (H, ) ,  [ H ( u ) , v ]  = 1. 

(iii) Clearly all m e m b e r s  of H ,  are con juga ted  in H ( u ) ,  so it suffices to p rove  

H, is a conjugacy  class in H. Suppose  v is con juga te  to u by an e l emen t  g in H.  

Since H = (F(H)) ,  there  are  (x l ) , - - - ,  ( x . ) E  F ( H )  so g = x~x2.. .x. .  Set Uo = u, 

u , = u ~ '  " . for  l = < i - < n .  Then  v = u,. We  claim for  each i, H , , = H  .... . C l e a r l y  

we may  assu me u, ~ u,.i. Th en [ u,, x, .~] ~ 1. I f u, ~ x, +,, t hen also u, ~ u ~ . . . .  u,.i  

and H,, = H  .... . If u , ~ x , . i ,  then (u, ,x, . , )  is a p - g r o u p  (with o rder  p3). Set 

w,.i = [u,, x,+l]. Then  (u,, u , . i ) =  (u,, w,.~). Moreove r ,  by (3.5) (iii), ~l((u,, u,+l))= 

~l((U, w,.~)) _C F. By (i), H., = H .... and the l e m m a  is comple ted .  
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(3.9) LEMMA. Let the Weyl rank of G be m, and L = (R,, R, )  where x ~ y, so 

that L = SL2(q). Let .~  = L ~ Assume old C_ .~ so for Ll, L~ (5 ~, [L,, Lz] = 1. Then 

I*Jl<=m. 

PROOF. If ~ = {L1,-" ",L,}, then (L, : i  = 2, . . ., t)_-< OP'(C6(L~)) which is a 

group of Lie type of rank < m .  By induction t - l _ - < m - l ,  so t=<m. 

w Reductions 

We assume in this section that G is a classical group, V the standard module 

for V, with the convention that if G ~SP2~,(2")---f12m+l(2"), then V is the 

orthogonal module. F is the collection of cyclic subgroups generated by root 

elements of G. Assume that the result is false and choose a counterexample with 

dim V = n minimal. Let X be a proper  subgroup of G with I G : X  I<  d(G) .  

(4.1) LEMMA. X is irreducible on V/Rad V. 

PROOF. This was proved in w 3. 

(4.2) LEMMA. UG(X;p)= {1}. 

PROOF. If U ( S U 6 ( X ; p ) ,  U ~ I ,  then X normalizes CWR.~v(U)~O,  

V/Rad V, contradicting (4.1). 

(4.3) NOTATION. For x (5 F(X),  set Wx = (Vy : Y (5 Hx), Yx = Rad W,. 

(4.4) LEMMA. Assume F ( X ) ~ O .  Let x (SF(X), and set H~ = H(x) .  Then 

IX : Nx (H,) I =< [n/2]. 

PROOF. Note that the Weyl rank of G is at most [n/2]. IX : Nx (H1)I is the 

number of conjugates of H1 in X, say t. Thus let the conjugates be Ht,  H2," �9 ", H, 

and gi (5 X so HI '  = H,, 2 _-< i _-< t. Choose u ~ v (5 H, and set Lt = (R,, Ro), and 

L, =L) ' ,  2<=i<-t. Then for i # j ,  [L,,Lj] = 1. By (3.9), t_~[n/2]. 

(4.5) LEMMA. Suppose G ~ SU, (qo) or Sp2m (q) (and in the latter case that q 

is odd). Assume F ( X ) #  O. Then F(X) is a conjugacy class in H = (F(X)). 

PROOF. Let  x (5 F(X),  and set H~ = H ( X ) .  We want to prove H~ = F(X),  so 

assume otherwise. We first prove Y, = Rad W, = 0. Suppose y (5 F ( X ) -  H,. 

Then V~ _-< V2, so V~ _-< W~ _-< Y~. Therefore  Y~ _-< Rad (Vy : y (5 F(X)). How- 

ever, Rad{Vy : y (5 F(X)) is normalized by X. By (4.1) X acts irreducibly on V, 

so Rad (Vy : y (5 F(X)) = V or 0. But Rad (Vy : y (5 F(X)) # V, and so Y~ = 0 as 

asserted. Thus W, is non-degenerate.  We next claim Cw. ( H 0  = 0. For y (5 H,, 

Cw,(HO<=Cv(y)<=V~;. Hence Cw.(HI)<=f"I ,~n,=W~.  Thus Cw,(H~)<= 
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W, n w~ = Rad W, = Y, = 0. Next we show Ht acts irreducibly on W~. Let U 

be an Hrinvariant  subspace of W,. As [H~, U] # 0, there is a y E/-it, so 

[ U , y ] # 0 .  Then V~ = [ U , y ] =  < U. Since H, is a conjugacy class in Ht, U =  > 

(V~ :y  E H ~ ) =  W~. Now if y EH~, z E F ( X ) -  H,, then V~ <-<_ V~ , so[V , z ]=O.  

Therefore [W~, z] = 0. Now Nx (H~) <-<_ N• (W,). Suppose g E Nx (W~), g E H,. 

Then [ U , y ' ]  = [ U , y ] ' #  0, so y '  E H , .  Hence Nx(W~)<=N• so N•  = 

Nx(W~). Let d i m W ~ = t < n .  Then IX :Nx(W, ) l=n / t .  Now since W, is 

non-degenerate, IN~(W~)I is easily computed and IG :N~(W~)l>d(G)n/t ,  
which contradicts I G : X I< d(G). 

(4.6) LEMMA. Suppose G is an orthogonal group, n > 6 and F(X) ~ ~ .  Then 
F(X) is a conjugacy class in H = (F(X)). 

PROOF. Let x E F(X), and set H~ = H(x). We must show H~ = F(X), so we 

assume on the contrary that F ( X ) ~  H~. We first show that Y, =< 

Rad(Vz :z  E F(X)). If we have shown this, then Yx =< Rad V, since X normal- 

izes Rad(Vz :z  E F(X)) and acts irreducibly on V/Rad V. If z (EF(X) and 

V~ n vz = 0, v ~  v~, then (Rz, Rz)E  A3 or A4 and so by (3.8) z (E H~. Then 

Y, = Y~ and so Y~ _- V~. So if V~ n v~ = 0 we may assume V~ =< V~, so then 

V, _-< W~ _-< Y~. Thus we may assume I/, n v,  ~ 0, z ~ H~. Then since H,  is a 

conjugacy class in H~, [H~, z] = 1, for all y (E H,, Vy n v ~ 0 .  But if x ~ y, then 

Vx n Vy = 0. Then since V, is a two-space, V~ = < V~ n V~, Vy n v , )  _-< w~. Thus 

in this case Y~ _-< W~ = V, and so our claim is proved. Now set 17 V/Rad V 

and denote images in V/Rad V by - .  We claim I~', = V. Note that if y E F(X) 

and 17y n ff'~ ~ 0, then v)~,y = l&'~. Also as we pointed out above, if V~ n vy -- 0 
A.  - -  j .  

and Vy ;~ V~, then I,~'~ = ~'y. Thus, if I~'~ ~ l~'y, then l,~'y _-< W,.  Therefore if 

n ' =  dim 17 and t = dim I&'~, since X is irreducible on 17, IX : Nx(l&'~)l = n'/t. 
Suppose '(~'z ~ I7', so t < n'. Note that t > 1. Again it is easy to compute N~(I~'~) 

and I G : N~ (l~'~)l > d(G)n' / t ,  from which it follows that I G : X I > d(G), a 

contradiction. Therefore I~'~ = 17. Let y E F ( X ) - H ~ .  Then H~ normalizes 

C~ (y) so H~ is not irreducible on 17. Also, C~ (H~)_-< Y~ = 0. Suppose 0 is a 

proper H~-invariant subspace of Q and 0 is non-degenerate, so 17 = 0 (~) 0 ~. 

[ O , x ] ~ 0 ,  so 0 n 1 7 ~ 0 .  If v,  Z O ,  then O =  17, contradicting 0~-  17. So 

O n  ~'~ is a one-space. Now, let y E H~, x ~ y .  Then [ O n  V~,y]= 

( 0  n 17~, 0 n 17y) < ( 0  n 17y f-. But if I~,' = O• n 17y = [0• y], then 

0 n 17~ ;~ ")~,'• for if 0 N 17, --_< I~ '~, then O n 17~ _- 17~ n 17~- = 0, a contradic- 

tion. Therefore the only non-degenerate Hrinvar iant  subspaces of I7" is I7". Now 

let 0 be a minimal H~-invariant subspace of 17. Rad 0 is Hrinvariant.  If 

Rad 0 = 0, then 0 is non-degenerate, contrary to what we have just shown. 
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Thus Rad 0 = 0 and 0 is totally isotropic. Now if y E F ( X ) - H x ,  then 

0 n  C o(y )  is Hr invar iant ,  so U A Co(y )  = 0 or 0. Suppose for some 

y E F ( X ) -  H,, t ]  n Co (y) = 0. Since dim (,'/Co (y) = 2, dim 0 = 2. However,  

we then have H~ _-< SL(U)  ---- SL2(q) and then dim l$'x = dim I7' = 4, a contradic- 

tion. So for all y E F ( X ) - H x ,  [U,y]  =0 .  Then [U,H(y)]=O.  But now with 

H ( y )  in the role of Ha, we must have Co (H(y) )  = 0, and this final contradiction 

completes (4.6). 

Now suppose Gw = O �9 L is a parabolic subgroup of G, where O = Op (Gw), 
O n L = 1. Set L~ = OP'(L) and P = OLd. Since P contains a p-Sylow of G, we 

may assume U n X E Sylp (X) where U E SyI~(P). Now clearly I PX  I <= I G I. 
Since IPXI = IPI" [XI / IP A XI we have 

(4.7) d (G)  > tO :Xt_-- > [P : P A X [ .  

Now I P : P A X I = ) P : Q ( P A X ) I . I Q ( P A X ) : P A X t .  I p : Q ( P A X ) t =  

IP/Q : Q(P  N X ) / Q  l, I Q( e n x ) : P  n x I = I Q : Q n x I .  Therefore  

(4.8) d(G) > IP/Q : Q(P  n X ) / Q  I" I Q : Q n x I . 

Note that P / Q  -~ L~. This will be a linear or classical group which we have 

already established the result for, and so we will have a lower bound for 

IP/Q : Q ( P  n X ) / Q  I. We will use this in subsequent sections to show F(X) ~ 0 .  

w 5. Linear groups 

The result for G = SL. (q)  is really quite easy. 

(5.1) LEMMA. n = d i m V _ - > 4 .  

PROOF. All subgroups of SL, (q )  are known for n < 3 (see [4], [7], [8], [13]) 

and the result holds in these cases. 

(5.2) LEMMA. X is not flag-transitive. 

PROOF. From the list of groups with a proper  flag-transitive subgroup in [16] 

we see 1G : X I ->- d(G),  contrary to assumption. 

(5.3) LEMMA. X is transitive on the points and lines of  PG(n - I ,q) .  

PROOF. Let r be the permutation character of G on PG,(n - 1, q) and ~- be 

permutation character on P G 2 ( n - l , q ) .  r  and r  are irreducible 

characters for G. The degree of Ir - ~" > d e g r e e  ~r - 1~ = q ( q ' - ' -  1)/(q - 1). 

Therefore (or - 1~, lx ~) = (Tr - % lx ~) = 0 since I G : X I< d (G)  _-< (q" - 1)/(q - 1). 

Thus (Tr, lx c) = (~, lx ~ from which the result follows. 



224 B.N. COOPERSTEIN Israel J. Math. 

(5.4) LEMMA. X contains a root subgroup of G. 

PROOF. Let W be a one-space of V, Gw = Q �9 L, L~, P as in w Clearly we 

may assume Q~Z X. Suppose P = Q(P n X).  Then P O X acts irreducibly on Q. 

However,  P O X normalizes Q n x ,  so since Q n x #  Q, Q n x = 1. Then 

since U O X E SyIp (X), q ' - '  divides I G : X I. However,  2q'-1 > 

(q" - 1)/(q - 1)_-> d(G).  Therefore  I G : X I = q ' - ' .  But then UX = G. Thus if 

B = No(U) ,  also B X  = G, and X is flag-transitive, contrary to (5.2). So 

P ~  Q ( P  n X). Moreover, by the argument above Q O X ~  1 and P n x 

Q ( P  o x )  n L does not act irreducibly on Q. Note we are considering O as an 

Fq-space for L,-~ SL,_,(q). Suppose that L2 normalizes a k-space of Q, with 

2_-<k_-<n-3.  So 

q" - 1 > ( q ' - ' -  1 ) (q" -5-  1) 
q - 1  = ( q 2 - 1 ) ( q - 1 )  

But since 2 =< n = 3, n _- 5, and this leads to a contradiction. So L~ normalizes a 

unique subspace of Q and is either a point of Q, or a hyperplane. In either case 

Q n x contains a root subgroup as claimed. 

(5.5) THEOREM. X does not exist and the result holds for G = SL,(q) .  

PROOF. By [11, 12] since X contains root subgroups and is transitive on the 

points of PG(n - 1, q), X ~ Sp(V) or SL(V). As X < G ~ SL(V), X ~ Sp(V). 

But X is transitive on lines of P G ( n -  1,q)  by (5.13), however, Sp(V) is not 

transitive on lines of P G ( n -  1, q) and the theorem is proved. 

w 6. Symplectic groups for fields of odd characteristic 

(6.1) LEMMA. n = 2m _-> 6. 

PROOF. By [14] the minimal degree for G = Sp4(q), q odd is d(G).  

(6.2) LEMMA. r ( X )  • ~ .  

PROOF. We assume on the contrary that F ( X ) =  O and derive a contradic- 

tion. Let W be a one-space of V, Gw = QL, U, Lj, P as in w Also set 

B =NG(U).  Since q is odd, Q is a special group. I Q l = q  2~-', Q o = Z ( Q ) =  

�9 (Q)  = Q '  E ~, L, ~ Sp2~-2(q) and Q/Qo is a Symplectic module for L,. Since 

F(X) = O, Qo n x = 1. Consequently Q n x is elementary abelian. The maxi- 

mal elementary abelian subgroups of Q all contain Qo and map onto maximal 

isotropic subspaces of Q/Qo. Therefore  I Q n X I < qm-, and 
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(6.3) IQ : Q N X l ~ q ' .  

Suppose Q A X  = 1. Then q2,- ,  divides I G :XI.  Since 2q 2m-1> 

q 2 ~ - l / q - l = d ( G ) ,  q2m- '=lG:X I. Then B X = U X = G  and X is flag- 

transitive. By [16], X ~ ( U ~ ) = G ,  a contradiction. So Q t~X~I .  If 

Q(P N X ) =  P, then P t~X is irreducible on Q/Qo. However, Qo(Q N 
X)/Qo~ 1, Q/Qo, so P A X cannot act irreducibly on Q/Qo. Therefore Q(P N 
X)<P,  so I P / Q : Q ( P A X ) / Q I ~ I .  Set L 2 = Q ( P N X ) N L ,  so 
IP/Q : Q(P tTX)/Ql= ILz:L21. By induction we have a lower bound for 

ILl :L21. Suppose m 2->4. Then 

(6.4) ILl :L21---> q2,,-:_ 1 
q - 1  

Now by (6.3), (6.4), and (4.8) we have 

q 2 " - I  q "  (q2"-~- 1) 
(6.5) q - 1 > q - 1 

Thus q~" > q"  (q2,,-2_ 1), so also q2, > q ,  (q2,-~_ 1) or q " > q2,, _ 1. It then 

follows that q"  => q2,-2.,  so m => 2m - 2 or m -< 2 contradicting our assumption 

that m --> 4. Therefore m = 3. Suppose q > 3. Then ILl : L~ I --> q ~ + q2 + q + 1. 

On the other hand by (6.3) I Q : Q N X I _--> q3. Now by (4.8) we have 

q 6 - 1  
> q3(q3 + q~ + q + 1), 

q - 1  

a contradiction. Therefore m =3 ,  q =3 .  But now ILl:L21=>27 and 

I Q : Q A X[ >= 27, so by (4.8) (36- 1)/2 > 3 ~. 3 ~, a contradiction and the lemma is 
proved. 

Now let H = (F(X)). By (4.5) F(X) is a conjugate class in H. 

(6.6) LEMMA. H acts irreducibly on V. 

P~OOF. Note that X normalizes Cv(H), so Cv(H) = 0 since by (4.1) X acts 

irreducibly on V. Let W be an H-invariant subspace of V. Then since 

[W, H]  ~ 0, [W, X] ~ 0 for all x E F(X). Then V~ =< W, so W _-> (V~ : x E F(X)). 

Clearly X normalizes (V, :x E F(X)), so ~ V~ :x ~ F(X)) = V and W = V as 

asserted. 

(6.7) THEOREM. The result holds for G = Sp2,,(q), q odd. 

PROOF. By [9], the only possibility for H is SIh,, (q0) where qo = p'*, col e. 
Then H = N~(H) and simple arithmetic yields I G : X I > d(G),  a contradiction. 
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w 7. Orthogonal groups in odd dimension 

In this section we prove the result for orthogonal groups in odd dimension and 

include the case of characteristic two. Since f12,.+1 (2") = Sp2r, (2") the result will 

then be proved for these groups as well. 

(7.1) LEMMA. n=2m+l_- ->7 .  

PROOF. l'~5(q) m Sp,(q). For q odd the result is in [14]. For q even the result 

can be foufid in [5]. 

(7.2) LEMMA. I"(X) ~ ~ .  

PROOF. We assume on the contrary that F(X) = O and get a contradiction. 

We first treat the case of odd q. Let W be a singular one-space of V, Gw = O �9 L, 

L,, P, U as in w and also set B = N~(U) .  0 is elementary abelian of order 

q2m-1, LI ~ f~2,~-1(q) acts irreducibly on O, and as a module for LI, Q is the 

orthogonal module. The "singular" vectors in Q are long root elements. There 

are subgroups of O of order q"-1 all of whose non-identity elements are long 

root elements, namely the maximal totally singular subgroups of O. Conse- 

quently I o n x  I=<q= and I o : o n x  I=>q' - ' .  If O n x = l ,  then q2=-, 

divides I G :X I. But 2q 2m-' > (q2,,,-,/(q _ 1)) = d(G), so that we would then have 

q2m-~ = I G : X I- Then B X  = U X  = G and X is flag-transitive. By [16] we then 

have X >= (U ~  = G, a contradiction. So O O X #  1. Since O n x < O and 

P A X  normalizes Q A X ,  o ( P n x ) # P .  If L 2 = Q ( P A X ) N L ~ ,  then 

ILl : L21 = Ie n X : o ( e  n X)l > 1. We can apply induction to L~ to get a lower 

bound for IL~ : L21. Suppose m => 4. Then IL, : L21 => (q2,,-2_ 1)/(q - 1) and since 

I O : Q n x I _-> q'~-', by (4.8) we get 

(7.3) d(G) > q~,-,(q2m-:_ 1) 
q - 1  

Since d ( G ) = ( q 2 m - l ) / ( q - 1 )  this leads to the inequality q 2 " - l >  
q=-t(q2=-2- 1) or q2= > qM-i(q2~, -1 ) .  Then qm+l>q2"-2--1 or q m , , >  q2=-2, 

so m + l _ - > 2 m - 2  and 3_->m contrary to our assumption that m_->4. Thus 

m =3.  Suppose q > 3 .  Then IL , :L21_->(q ' - l ) / ( q -1 ) .  On the other hand 

]O : O O X I_- > q2, so (q6_ 1) / (q-  1)>q21L,:L21 by (4.8), and this gives 

q 3 + q 2 + q + 2 > l L , : L 2  t or q ~ + q 2 + a + l > = J L , : L 2 l .  

Therefore we have equality. By [14] there are ~ o  possibilities for the class of L2 

in LI: the stabilizer of a "singular point" of O or the stabilizer of a "singular 
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line" of O. In either case, if R = Op (L2), then Co (R) is a singular subgroup of 

Q. However, since ILl :L21 = (q~- 1)/(q - 1) we must have IQ nxl>=q 3 from 

(4.8), and therefore I Q o X l = q  3. L2 and R normalizes Q n x .  Then 

Conx(R)#  1. But ~g~(Co,~x(R))C_ ~gl(Co (R))CF, contradicting F ( X ) =  QS. 

Therefore q = 3 .  Now tL,:L21>27 and from (4.8) we get 364> 

t Q : Q  NXI.27.  Then IQ:Q N X t <  14, so I Q : Q  NX]  <9, so tQ N X I =  27. 

However, Q is an orthogonal space over F3 and any 3-subspace must contain 

singular vectors. Then ~ #  F(X O Q) _c F(X) = ~ ,  and this contradiction com- 

pletes the case q odd. 

Now assume q even. Let W be a singular one-subspace of V, Gw = Q �9 L, L~, 

P, U, B as before. L~-~l'12,~_,(q) and Q is again elementary of order q2,,-~. 

However, Qo = Z(P) has order q, is a full transvection group on V/Rad V, and 

LI acts irreducibly as Sp2,,-2(q) on Q/Qo. Q again contains subgroups Q~ of 

order q '~-' so ~'~ (Q,) c F, and so / Q n X/---< q " and t Q : Q n x I --> q"-I .  Set 

L2 = Q(P O X) A L~, so IP :  Q(P o X)l= IL~ : Lzl. If L2_-> L~ (i.e., if Q(P O X) 
cover L~), then we must have Q n x  =< Q0 and q2,,-2 divides IQ : Q N X I  and 

IG:XI.  Note when q=2,  2 2 " - ' > 2 " - ~ ( 2 " - l ) = d ( G ) ,  and so in this case 

I G :X 1=22'~-:. But then X is flag-transitive, and then by [16], X = G, a 

contradiction. Therefore q > 2. Note now that we must have I G : X I  = q~"-2a 
and a -<q + 1. Also O| O X/Q O X)~-~2,,-t(q). Since q =>4, fl2,,-,(q) does 

not have a double cover, so O~(P O X) ---- f~:,._, (q). Now for any maximal totally 

singular subspace W~ containing W, N~,• SL(W~/W). Consider Gw, = 

R �9 K where R = 02(Gw,), R O K = 1. Set Ki = O2'(K), P~ = RKz. qZ,,-2 divides 

IP,:P, A X I  and q2"~-2a=!G:Xt>_-IP,:P, N X I = I R : R N X t . I K , : K 2 1  
where Kz = R(P~ N X) ~ K~, by (4.8). We remark that R is elementary of order 

q~"t"*~ and is indecomposable as a module for K~. It has a unique proper 

Krinvariant  subgroup Ro of order q~"t"-~. As a module for K~, Ro~A2(W) 
and R/Ro ~ W* = HomF~ (W, Fq). Now IR I > d(G), so R N X ~  1. Since K~ acts 

indecomposably on R N X, if K2= K~, then Ro<=X which would imply 

F ( X ) ~  ~ since Ro contains subgroups Rz of order q"-~ such that ~ (RI)_C F. 

Therefore K~>K2. Since m _->3, q >2 ,  ]K~ :K2]>-_q" - 1/(q - 1). On the other 

hand IR : R N X I_- > q~' -7. From this it follows that IK, : K2t = 2br where (2, r) = 

1, r =< q + 1 and q"-~ -< 2 ~ < q ' .  Therefore K2 must act irreducibly on W~. Now 

let K3 = Nr,(W), P: = N~,(W). We saw that P2 n X = Nx (WO induces SL,._~(q) 

on WJW. Consequently Ks N K3 covers OZ(K3/O2(K~)). If K~ N O2(K~)~ 1, 
then O2(K3)<= Kz and then (IK, :K:],2)= 1. Therefore K: N O2(K3)= 1. But 

then (K2 N K~)'----SL,~_, (q). Since q > 2, if m > 3, then by [10] (K~ N K~)' splits 

over W, and hence contains full root subgroups. But then by [7], K2 = K~, a 
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contradiction. Therefore m = 3. However all subgroups of KI are known and 

there is no such Kv So we have a contradiction. Therefore we cannot have 

L2 => L'a, and we have also shown that Q rl X ~  Q0. Therefore since L2 normal- 

izes Q fq X #  Qo, Q we must in fact have IL~ :L21--> (q , , -2_  1)/(q - 1), even 

when q = 2. Since I O : O CI X I _-> q"- t  we have either 

o r  

q2.. _ 1 , . - ,  ( q 2 , . - 2 _  1) 
q - 1 > q q - 1  when q >2 ,  

2"- '  (2" - l) > 2"-~(2 2"-2- 1) when q = 2. 

The second case leads to 2 > m  which is not the case, so q >2 .  Thus 

q2,, >q- - i (q2 , , -2_  1) or q " + l > q 2 " - 2 -  1, and so m + l = > 2 m - 2  and m _-<3. 

Therefore m = 3. Now (q 6 _ 1)/(q - 1) > q 21L~ : L~ I so q 3 + q 2 + q + 2 > I L~ : L2 I, 

so we must have IL~ :L21 = ( q ' -  1)/(q - 1). By [5], there are two possibilities for 

the class of L2. In either case L2 normalizes a unique minimal subgroup of Q 

containing Qo, and in either case it contains long root elements. Since L2 

normalizes Q N X #  Qo, F(Q N X ) #  0 ,  and this contradiction completes the 

lemma. 

Now let H = (F(X)). 

(7.3) LEMMA. Let Q = V/Rad V and denote images in Q by - .  H does not 

normalize any proper non-degenerate subspace of V. 

PROOF. This is contained in the proof of (4.6). 

(7.4) LEMMA. Either H is irreducible on Q or q is even and H normalizes a pair 

of maximal totally isotropic subspaces of Q which intersect in O. 

PROOF. Let I~' be a minimal H-invariant subspace of I7. If i f ' #  V, then if' is 

totally singular if V = ~' or totally isotropic if Rad V #  0, since Rad i f ' #  0 if 

i f ' #  17" by (7.3). Let g E X so i f ' #  I~". Such a g exists since X is irreducible on 

~' by (4.1). Then if' + i f "  = W (~ if'* must be non-degenerate, and so by (7.3) 

f" = W (~ if'*, and dim Q is even, so that f ' #  V and q is even. Note in the latter 

case that if 0 is a maximal totally isotropic subspace of f '  normalized by H, then 

for any x E F ( X )  V x N U # O  and if V x N O = V •  then O = f f ' .  This 

implies that H normalizes at most q + 1 maximal totally isotropic subspaces of 

f,. 

(7.5) LEMMA. H is irreducible on V. 
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PROOF. From (7.4) we can assume q is even, H not irreducible on f'. Let 

i f ' l , ' - - ,  if', be the maximal totally isotropic subspaces normalized by H, 

t =<q + 1. X permutes these, so IX : N x ( f f ' , ) l =  < t. Now if R = Op (Nx(K'l)),  

then [R, H ]  _~ R Iq H =< Op (H)  _-< Op (X) = 1, so R ~_ Co (H). But H acts ir- 

reducibly on ff'~, R normalizes if'l, so C~v, ( R ) ~  0 and therefore [R, if'l] = 0. 

Therefore R ~_ Co (ff'~)= Q. Now Q is as described earlier, an elementary 

group of order q~,~(,,+~) with a subgroup of order q�89 so that if L = 

02'(N(IY/~)/C(ITr = SL(.~',), then Qo -~ A2(~/~) and Q/Qo =- if'* = 

Hom,,(ff 'x,  Fq) as modules for /S. Since H acts irreducibly on ff'~, R _~ Qo. 

Therefore 

IO:Nx(l~/,)l>-qm . ~  (q' + 1). 
I-1 

Now it follows that 

I G:  X I>= q"[-I (q' + 1)/t >- q".  FI (q' + 1) _~ q" (q'- + 1) > d(G),  
j - I  I - 2  

a contradiction. 

(7.6) THEOREM. The result holds for G = fl2,.+,(q). 

PROOF. By the main theorem in [9] we can identify H. H -  [12m§ 

q0 = p'~ eole or H---G2(qo), q0 = p,o, e01e and m = 3. In either case clearly 

I G : N o ( H ) I  > d(G),  which yield a contradiction. 

w a;.(q) 

Because of the isomorphisms l)~(q) ~ SL2(q) x SL2(q), fl~(q) ~ S L ( q ) ,  we 

need only consider the cases m => 4. 

(8.1) LEMMA. I"(X) ~ O.  

PROOF. Assume F ( X ) =  0 .  Let W be a singular one-subspace of V, Gw = 

QL, LI, P, U, B as in previous sections. Q is an elementary ahelian group of 

order q2,,-2 and an orthogonal modules for LI -= f~;,,-2 (q). If x E Q is a singular 

vector, then (x) E F. Since the maximal singular subspaces of Q have order q"- t ,  

I Q : Q  f~XI-->q ' - I .  Set L 2 = ( P t " I X )  tqLt.  If L 2 = L t ,  then we must have 

Q N X = I .  Then since U N X E S y l p ( X ) ,  q2,,-2 divides I G : X I < d ( G ) <  
2q 2"-2. Then q2,-2 = I G : X  I- This implies B X  = UX = G, X is flag-transitive. 

By [16], X>=(U~ a contradiction. Therefore Q f 3 X #  1. Consequently 

L2 # LI. From (4.8) d(G)  > I Q : Q tq X I" I L, : L2 I. Suppose m _- 5, q > 2. Then 
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(q"  - 1 )q"- '  + (q m-, .-~ + q 1 1 >  qm_, - 1 ) ( q  1) 
- q - 1  

by induction. Then q2m-~ + q,. _ q.,-,  + 1 > qm-I(q2m-S + q..-~ _ qm-2_ 1), SO 

also q2~,-l+q,.+qm-l>qm-l(q2m-3+q~,-l_q~,-2__l), thus q ~ ' + q - l >  

qZ~'-3 + q m-l-- q m-2--1 or 

q .,-l + 1 > q2,,-3 + q,,-, __ qm-2 > q2,,-3 + q m-2 > q2,,-3 + 1. 

Therefore  m - 1 > 2m - 3 so m < 4 contradicting m _-> 5. Suppose q = 2, m _-> 5. 

Then 2" - ' (2  " - 1 ) > 2  m-'. [2m-2(2 " - ' -  1)] which yield 2" - 1 >2" -2 (2  - - ' -  1), 

from which it follows that 4 > 2 ~'-~ - 1 _-> 15, a contradiction. Therefore  m = 4. 

Suppose q > 2. Then from (4.8) we have 

(q3+ 1 ) ( q ' -  1 )>  q31L ' :L21, 
q - 1  

so q3+ q Z+q +2>[L ,  :Lzl. However,  q s+ q 2 + q  +2  does not divide I SL,(q)[,  

so in fact q3 + q2+ q + 1 _-> IL, : L2[ > (q4_ 1)/(q - 1), so we have equality. From 

this it follows that I Q O X I = q3. There are two possibilities for the class of L2 in 

L~. In either case L2 normalizes a unique proper  subgroup of Q, Co (Op (L2)) and 

this is a totally singular subgroup of Q. However,  L2 normalizes Q n x ,  so 

~, (Q fq x )  c F, contradicting F(X) = 0 .  So it remains to consider m = 4, q = 2. 

Now from (4.8) we have 23(2 ~ -  1)>231L, :L2[ ,  so I L , : L 2 1 <  15. Since L , ~  

S L , ( 2 ) - =  As we must have L2-~ AT. However,  then Lz is irreducible on Q and 

this contradicts 1 ~ Q tq X < Q. 

(8.2) THEOREM. The results hold for l~2~(q). 

PROOF. We first prove that H = (F(X)) acts irreducibly on V. By the proof of 

(4.6) the only non-degenerate subspace of V normalized by H is V. Suppose W 

is a minimal H-invariant subspace of V. Since [ V, H I  ~ 0, X is irreducible and 

normalizes Cv(H), so Cv(H) = 0. Rad W = 0, so W is totally singular. Since 

H = ( F ( X ) ) ,  W = ( [ W , X ] : X ~ F ( X ) ) .  Let W s be an X-conjugate of W. If 

x - y  in F(X), then v x n  W ~ ( V y N W S )  ~, so W + W  s = Wf~)W g is non- 

degenerate and hence V = W + WL As in (7.5) H normalizes at most q + 1 

maximal totally singular subspaces and so there are at most q + 1 X-conjugates 

of W. Therefore  IX : N• q + 1. Let R = Op(Nx(W)).  Then [R, H]  = 1, so 

we must have [ W , R ] = 0 .  Let Q = C o ( W ) =  Op(No(W)). As a module for 

Nc(W)/Co(W),  Q - - A 2 ( W ) .  Thus if x ~ y E r ( X ) ,  then ICo((x,y))l= 
q~<~,-2)~,-3>, and so we must have I Q : C~(H)I > I Q : Co((x, y ))1 = q2m-3. There- 

fore [G:Nx(W)I>q2" -3 . [G:No(W)I>q2" -3d(G) .  But then I G : X I >  
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q2"-3d(G)/(q + 1)>  d(G) ,  a contradiction. So our assertion is proved. Now by 

the main result in [9] we can identify H :  

(i) H = f~2+, (qo), qo = p'~ eole. These are the centralizers of field automorph- 

isms in G. Then X = H .  The worst case is when q = q ~ .  Then I G : X  I= 
IG :Hl>q~"<'~-~)+16>d(G). 

(ii) H = l)~-,~(qo), qo=p'~ As in (i) the most extreme case is when 

q = q~. Then I G : H I --> q~,,,r > d(G). 

(iii) m is even, H =SU~(q0),  qo=p'~ Then IG :No(H)]>= 
q~"o--'~ > d(G)" 

(iv) m = 4, H / Z ( H )  = etl~(qo), IZ(H)l = (2, q o -  1) where qo = p'~ eole. This  

embedding is conjugate in A u t P f ~ ; ( q )  to a group stabilizing a non-singular 

one-space. There are two such embeddings. The worst case is when qo = q. Then 

t G : No(H)I = q~(q ' -  1)/2 > d (G)  when q > 2, and equals d (G)  when q = 2. 

(v) m =4 ,  H=3D,(qo),  qo=p'O, eole/3. Worse case is q3=q. Then 

I G : No(H)l  > q~'> d(G). 

(vi) q is even, m = 6, H = 3.  Pf~6'"(3) < GU6(2) < f172(2); it is clear that this 

index is too great. 

(vii) q even, H =  A ~ $2~ in O+(4k, q), A is homocyclic group and 

exp(A) l  q + 1. In all cases H = N(H)  and clearly I G : N o ( H ) I > d ( G  ). 

(viii) q is even, H = A ~ W, A homocyclic with e x p ( A ) l q  - 1 and W the 

Weyl group of G. Then H = N(H),  and IG : H I > d ( G ) .  

w Unitary groups 

Since SU2(q)~  SL2(q), and all subgroups of SU3(q) are known [13], we may 

assume n _-> 4. As in previous sections, we prove 

(9.1) LEMMA. F ( X ) ~ .  

PROOF. Assume on the contrary that F(X) = O. Let W be an absolute point 

of V, Gw = Q �9 L, L:, P, U, B, L2 as in previous sections. Qo = Z ( Q )  = Q' = 

�9 (Q)-->/3 '(Q),  O is special, I QI = q2,-3, and Q/Qo is the unitary module for 

L ~ S U ~ _ 2 ( q ) .  Note that ~(Qo)_CF and therefore Q M X  is elementary 

abelian. The maximal elementary abelian subgroups of Q correspond to the 

maximal totally isotropic subspaces of Q/Qo. Therefore,  if n is even, they have 

order q ' - : ,  and if n is odd they have order q,-2. Since Q o ' ( O  N X )  is 

elementary and Q o M X = I ,  I Q o . ( Q f 3 X ) l = q I Q A X  I and so we have 

IQ tqXl<=q "-2 if n is even, and IQ f3X l -~q  "-3 if n is odd. By (4.8) d ( G ) <  

I Q : Q N X I �9 I L~ : L21. Suppose n is even, n => 6. Then 
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(q" - 1)(q ' - '  + 1)> q ,_ , lL ,  : L2]. 
(9.2) q2_ 1 

If O fq X = 1, then as in previous sections X is flag-transitive and we have a 

contradiction. From this it follows that L, # L2. If n > 6, then from (9.2) and 

induction we have 

which gives an easy contradiction. Suppose n = 6. Then we have [L~ :L2[_  -> 

(q3 + 1)(q + 1), and from (9.2) we get 

(q ' -  1)(q' + 
q 2 _ l  1 ) > q , ( q 3 + l ) ( q + l ) ,  

again impossible. Therefore if n is even, then n = 4. Now since I O : O Iq X I _- 

q3, qS divides I G :XI.  Set I G :X]  = q3/z. Note that qS(q +2)>(q3+ 1)(q + 1 ) =  

d(G), so/z  =< q + 1. Now L, -= SL2(q). All subgroups of SU,(2) are known (see 

[3]), so we may assume q > 2 .  We have by (4.8) q3t.t>=q31L~:L2 I, so /z => 

IL,:L21. I fq  =3 ,5 ,7 ,  or 11, then q <=lL,:Lzl<-_tt =<q + 1 so/z = q  o r q  + 1. If 

# = q, then X is flag-transitive, and then X = G which is not the case. If q = 9, 

then 6_- < p. _-< 10. However, if/~ < 10, then L2~ As and then L2 acts irreducibly 

on Q[Qo. Since I O : O CI X I -> q3 > q, this would imply O CI X =< Oo, and then 

O I"3 X = 1, which we have already seen is not true. Therefore in all cases 

/x = q + 1. Now let W1 be a maximal isotropic subspace of V so that B =< Gw,, 

and consider Gw, = R .K  where R = Op (Ow,), R N K = 1. Set R, = O~'(R), 

PI = RK,, K2 = R(P, A X ) A  R1. R~ is an elementary abelian group of order q* 

and the orthogonal module for K~ ~ l ' ~ ( q ) ~  SL2(q2). Then we have q3 divides 

] P , : P , f ' ) X I = I R  :R NXI.IK,:K2I<=q3(q + I). Since IQl l=q ", Q ~ N X ~  I, 
and without loss of generality Qo _c Qt. Since K1 acts irreducibly on Q~ we may 

assume K I # K ~ .  All subgroups of K~ are known, and if K ~ K 2 ,  then 

[K~ : K21s.--> (q2_ 1)/2 whereas ] P, : P, O X [~. <_- q + 1. Therefore (q~-  1)/2 _<- 

q + 1, so (q-1)/2_-< 1 and q _-<3. Since q #  2, q = 3. Now P1N X contains a 

five-Sylow of P~, and a five-Sylow acts irreducibly on QI and we have a 

contradiction. 

Therefore, n is odd. Now from (4.8) we have 

Once again we cannot have Q fq X = 1, so L~ ~ L2, and hence by induction 
IL ' :L~I => (q,-2 + 1)(q,-3_ 1)/(q2_ 1) and so 
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1)(q.-1_ (q.-Z + 1)(q.-3_ 1) (q'+q~-I 1)>q. q 2 - 1  

This gives q2.-, + q .  + q.+l _ 1 > q" (q2.-~ + q.-Z + qn-3 _ 1) and so 
q2.-a _ q .  + q . - ,  > q .  (q2.-5 _ q .-z + q.-3 _ 1). Then q" - q + 1 > 

q(q2.-5_ q.-2 + q . -3_  1), and so q" - q => q(q2.-5_ q.-2 + q . -3_  1) or q . - i  > 

q 2.-s _ q .-2 + q .-3 _ 1. Finally 

q.- i  >__ q2.-5_ q.-2 + q.+3 or q2 ~ q"-2-- q + l > q ' - 2 -  q. 

Thus q > q'-3 _ 1 which implies n - 3 _--< 1 and n _-< 4 contrary to n _-> 5, and with 

this contradiction the lemma is complete. 

(9.3) LEMMA. H = (F(X)) is irreducible on V. 

PROOF. Note that X normalizes Cv(H), so Cv(H) = 0 by (4.1). Let W be an 

H-invariant subspace of V. Then as H = (F(X)), [ W, H]  ~ 0, [ W, X] ~ 0 for all 

x E F(X). Then (V~:x E F ( X ) ) -  < W. But X normalizes ( V . : x  E F(X)), so 

V = ( V .  :x E F(X)) < W and V =  W as asserted. 

(9.4) T H E O ~ .  The result is true [or Unitary groups. 

PROOv. By theorem II in [9], the possibilities for H are as follows: 

(i) n is even, H = Sp. (qo), q0 = p'~ e01 e, 

(ii) SU. (q0), q0 = p'% e0 l e, 

(iii) E2.+,, E2.+2 in SU2.(q), q even, 

(iv) 3. Pfl~'"(3) in SU,(q), q = 2", e odd, 

(v) O[.(q) < Sp2.(q) < SU2.(q), q even. 

In all cases it is a routine calculation to show [G :No(H)[  > d(G),  and with 

this contradiction the theorem is established. 

w ft~(q) 
We are assuming n---4 since f l~(q)~  SU4(q) and [ ~ ( q ) ~  Sl.,2(q 2) and the 

results for these groups have already been established. 

(10.1) LEMMA. F ( X ) ~  O 

PROOF. Assume I'(X) = ~ ,  and let W be a singular one-subspace of V. Let 

Gw = QL, L1, P, U, B, L2 be as in previous sections. Q is elementary abelian, 

I O l = q  2"-2 and is the orthogonal module for L1=-l)~,,_2(q). The singular 

vectors of Q generate members of F. Since a maximal totally singular subspace 

of Q has order q"- ' ,  I Q N X I _-< q". From (4.8) we have 



234 B.N.  COOPERSTEIN Israel J. Math. 

(q" + 1 ) (q" - ' -  1) q.-2 L2I. 
q - 1  > IL,: 

As in previous sections, O A X = 1 implies X flag-transitive and from [16] we 

get a contradiction. As in the previous sections this implies L, # L2. Suppose 

n > 4. Then we have 

(qn + 1) (qn- ' -  1) > q._2(q ' - '  + 1)(q "-2- 1) 

q - 1  q - 1  ' 

and this will lead to a contradiction. Therefore n = 4. Now let W be a singular 

two subspace of V and consider Gw, = R K  where R = Op (Gw,), R f3 K = 1. Set 

K1=O"'(K),  P~=RK,,  K : = R ( P ,  n X ) n K , .  R o = R ' = Z ( R ) = ~ ( R ) > - _  
U'(R) has order q. R is special of order q 9. ~o(Qo) _c F. The maximal elementary 

subgroups of R of maximal order have order q~ and of course contain Ro. Since 

R o A X  = 1, IR M Xl<-_q ~ and so ]R :R N X]>-_q 5 and so q5 divides IG : X  I. 

Therefore 

] G : X l = q ~ l ~ < ( q ' + l ) ( q 3 - 1 ) =  q~ q2 q - 1  q6+ +q ,+  + q + l < q S ( q + l ) .  

So/~ < q + 1. Now from the way in which (4.8) was derived we have 

qS(q + l)__> qS/z = ]G : X  I > IQ : Q N XI  I L, : L2I> q2I L, : Lz]. 

Therefore ]L~:L2]<-q3(q + 1). But L , - S U , ( q )  and we showed in w that 

ILl :L21_--> (q3+ 1)(q + 1)> q 3(q + 1) and this contradiction completes the proof 

of (10.1). 

Set H = (F(X)). As in w167 and 8 we must have 

(10.2) LEMMA. H is irreducible on V. 

Now we can quote the main theorem in [9] as in the previous sections to get a 

contradiction. We omit the details because of the similarity to the previous 

sections. Thus we have 

(10.3) THEOREM. The result is true for fi;,,(q). 
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